Pavement Warranties in Highway Construction

Project Selection and Evaluation

Presented by:

Megan Syrnick

Consultant, Trauner Consulting Services, Inc.

Hot Mix Asphalt Technical Conference Illinois Bituminous Paving Conference

Springfield, Illinois March 9, 2008

Warranty Background

Pavement Warranty Study NCHRP 10-68

Scope

- Literature review -reports, guidelines, and specification documents
- Targeted interviews
- Project selection tool
- "Best-practice" guidelines
- Technical guide specification revisions

Warranty "Pressure"

- DOT Internal Decision
 - Most (MS, WI, IN, CO, FL)
- Legislative Mandate
 - LA, MI, OH, IL
- Industry
 - Suppliers, Bonding

Warranty Types

- Type 1
 - material and workmanship
- Type 2
 - short-term performance
- Type 3
 - long-term performance

Pavement Warranty Definitions

Type 1: Material & Workmanship

- Typically 5 years or less
- Traditional delivery (D-B-B)
- Prescriptive specifications
- No contractor design responsibility
- Warrantor responsible for defects related to materials & workmanship under its control

Material & Workmanship Warranties

Design Construction Maintenance

Contractor

Length: 5 years or less

Involvement

Pavement Warranty Definitions

Type 2: Short-Term Performance

- Range 5-10 years
- Mix of prescriptive and performance specifications
- Traditional (D-B-B) or Alternative delivery (D-B or multiparameter bidding)
- Increased control of material selection, mix design, equipment selection, traffic control, and aspects of structural design
- Responsibility for correcting deficiencies under contractor control

Shorter-Term Performance Warranties

Design

Construction

Maintenance

Contractor Involvement

Length: 5 to 10 years

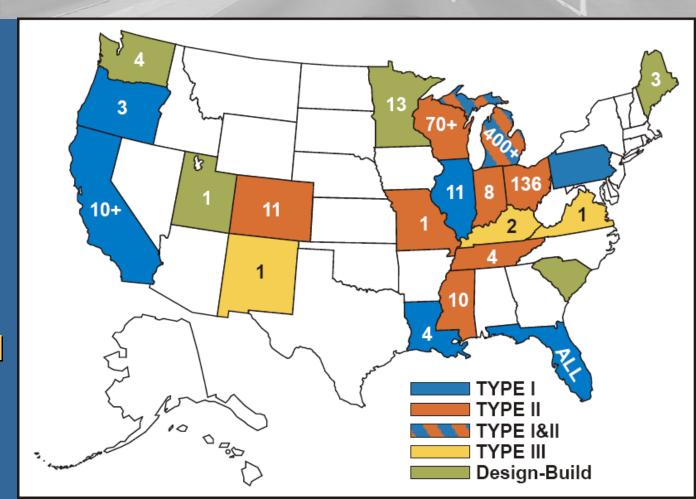
Pavement Warranty Definitions NCHRP 10-68

Type 3: Long-Term Performance

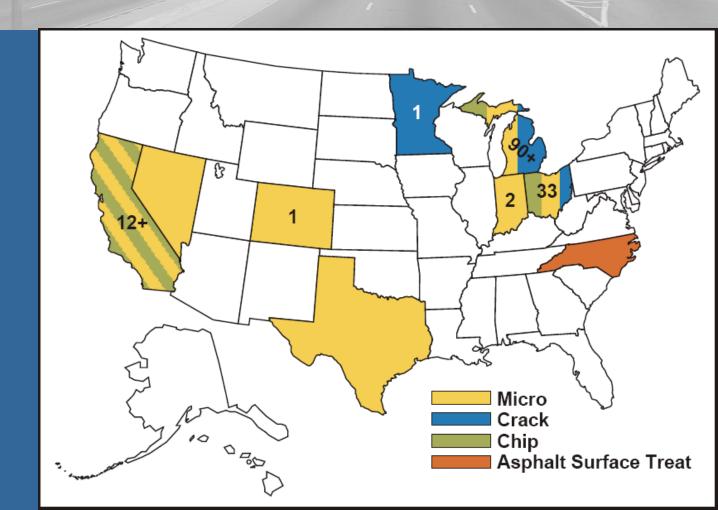
- Greater than 10 years
- Performance specifications
- Alternative Delivery (D-B-W or O&M)
- Contractor control of design
- Responsibility for planned and unplanned maintenance during life of warranty

Long-Term Performance Warranties

 Design
 Construction
 Maintenance


Contractor Involvement

Length: More than 10 years


HMA Pavement Warranties

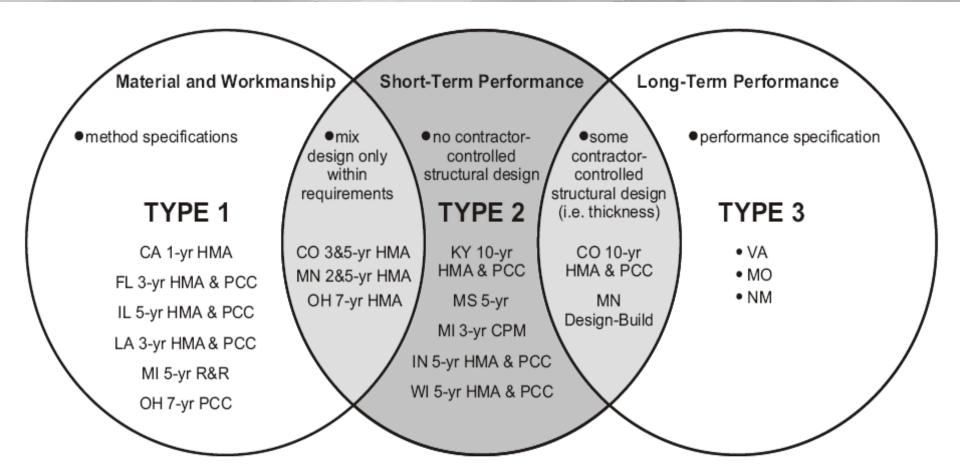
- 22 states
- 700+ projects
- Let but no bidders MD, AL
- Dropped ID,HI
- Planning to Use: MT, TX

Microsurfacing/Crack Treatment/Chip Sealing Warranties

- 9 states
- 140+ projects

Pavement Warranties Findings from Specifications

Type 1 Type 2 Type 3


Contractor Involvement

Prescriptive QA Spec PRS

- Type 2
 - Mix Design & Material Selection
- Type 3 (D-B)
 - Structural Design >> Maintenance

Warranty Provision Comparison

Pavement Warranties Project Selection Criteria

- Authority to apply warranties
 - District (CO, MS, OH, WI)
 - Central Office (IN, LA)
 - Collaboration (CA, IL)
- Warranties applied as a standard
 - FL and MI

Pavement Warranties District Level Application

Colorado

Structural design life, minimum tonnages, primary scope, WIM nearby or included in scope

Mississippi

Base conditions, expected level of competition

Ohio

 Simple scope, free of complicating factors that would be classified as outside the control of the contractor, comply with legislation

Wisconsin

 Projects with a high chance of success for performing well under the warranty

Pavement Warranties Central Office Application

- Indiana
 - Time-sensitive, highly visible projects
- Louisiana
 - New construction only

Pavement Warranties Collaborative Application

California

 Minimum requirements for total combined cracking, transverse cracks, longitudinal cracking, rutting and bleeding

Illinois

Design-life, comply with legislation

Pavement Warranties Project Selection Criteria

Project Considerations

 Project size and scope, existing defects and pavement condition, design-life

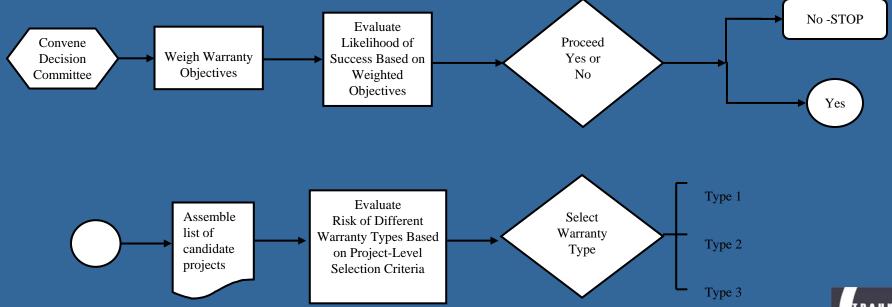
Other Considerations

 Expected level of competition, procurement method, legislative mandates, ability to measure performance

Pavement Warranties Programmatic Criteria

DOTs

- How to measure performance?
 - Ability to define distresses and correlate to long-term pavement performance
- How to measure success?
 - Perceived versus qualitative benefits


Pavement Warranties Programmatic Criteria

Contracting Industry

- Investment in understanding of
 - Design
 - Job Mix Formula
 - Pavement Design
 - Placement Strategies
 - Testing and Inspection
 - Quality Assurance Measures

Seven-Step Approach

Identify and Objectives

- Consistency of the overall network
- Substantial performance improvements on a specific project
- Additional assurance against catastrophic failures
- Contractor innovation
- Redirect DOT inspection forces
- Shift responsibility for long-term operation and performance

Evaluate Likelihood of Success

- Relates directly back individual objectives
- Focuses on programmatic or cultural considerations
- May not be necessary if warranty program is already established

Decision to Proceed

 Can stated objectives be accomplished within the programmatic or cultural boundaries

- Project-Level Risk Assessment
 - Classify project
 - Pavement Preservation
 - Rehabilitation
 - New Alignment or Full-Depth Reconstruction

Warranty Decision Tool Pavement Preservations

Possible Warranty Types: 1 and 2

Risk Assessment for Pavement Preservation Project

Description		1ype 1	Type 2	Risk Comment	
3A.1	Scope	M	L		
3A.2	Surface Conditions	M	M		
3A.3	Level of Accuracy- ESALs	L	L		
3A.4	Mix Design Control	L	H	Contractors have to be given some level of control of the mix in a Type 2 situation	
3A.5	Equipment Control	L	H	Contractors have to be given some level of control of the mix in a Type 2 situation	
3A.6	Phasing Control	L	M		
3A.7	Thresholds	M	M		
3A.8	Maintenance	L	M		
3A.9	Performance	M	M		

Warranty Decision Tool Pavement Rehabilitation

Possible Warranty Types: 1 and 2

Risk Assessment Summary for Pavement Rehabilitation Project

Description		Type 1	Type 2	Risk Comments	
3B.1	Scope	M	L		
3B.2	Base Conditions	L	L		
3B.3	ESALs Predicted	L	L		
3B.4	ESALs Monitored	L	M		
3B.5	Mix Design Control	H	L	The period is not long enough to shift this responsibility away from the agency	
3B.6	Thickness	L	\mathbf{M}		
3B.7	Equipment/Application	H	\mathbf{M}	The period is not long enough to shift this responsibility away from the agency	
3B.8	Phasing Requirements	L	L		
3B.9	Performance Indicators	M	L		
3B.10	Warranty Thresholds	L	L		
3B.11	Maintenance	L	M		
3B.12	Performance Expectation	M	M		

Warranty Decision Tool New Construction or Reconstruction

Possible Warranty Types: 1, 2, and 3

Risk Assessment Summary for New Roadway or Major Rehabilitation of the Subgrade

Description		Type 1	Type 2	Type 3	Risk Comments
3C.1	Scope	M	L	M	
3C.2	Foundation Conditions	M	L	M	
3C.3	ESALs predicted	L	L	M	
3C.4	ESALs monitored	L	L	L	
3C.5	Mix Design Control	M	L	L	
3C.6	Structural Design Responsibility	L	M	H	Contractors have to be given some level of control in a Type 3 situation
3C.7	Equipment/Application	H	M	L	Period not long enough to shift this responsibility away from the agency
3C.8	Phasing Requirements	L	M	H	Contractors have to be given some level of control in a Type 3 situation
3C.9	Performance Indicators	M	L	M	
3C.10	Warranty Thresholds	L	L	L	
3C.11	Maintenance	L	M	H	Upfront cost unfavorable if reducing LCC is not priority
3C.12	Performance Expectations	M	M	M	

Summary

- Decision process involves both programmatic and project level considerations
- Assess objectives and apply a warranty type consistent with the characteristics of each contract, project, or program
- Warranties can raise the quality bar
 - Must continue to weigh the required investment against value received

Recommendations

DOTs

- Partner with industry (performance parameters, durations, implementation, inspection, etc.)
- Select appropriate projects
- Streamline and automate data collection
- Explore/test alternatives to bonding
- Implement alternative contracts (D-B, best-value and/or special prequalification)
- Measure success based on LCC, post construction assessments

Recommendations

Industry

- Participate in warranty policy discussions
- Become educated on warranty issues and risks
- Understand investment required for warranty projects
- View warranty expertise as competitive advantage

Pavement Warranties in Highway Construction

Project Selection and Evaluation

Presented by:

Megan Syrnick

Consultant, Trauner Consulting Services, Inc.

Hot Mix Asphalt Technical Conference Illinois Bituminous Paving Conference

Springfield, Illinois March 9, 2008

